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Abstract—Time reversal is a physical principle well-known for
its deterministic focusing effect. The recently discovered statistical
effects shows the time-reversal focusing spot is not a point but
with a Bessel power distribution. This finding offers accurate
and reliable speed estimation indoors, where multipaths are
abundant with mostly non-line-of-sight conditions, and enable
various indoor applications such as wireless sensing and tracking.
No known techniques can strive in such scenarios. In essence, time
reversal is an effective tool that embraces multipaths as virtual
sensors with hundreds of thousands of degrees of freedom for
our utilization.

I. INTRODUCTION

Time reversal physical principle has been known for a long
time but it has largely been limited to fundamental scientific
exploration [1] or niche defense applications, particularly in
the field of underwater acoustic communications [2]. It has
rarely been known to the general public due to its limited
impact to daily life. Only until early 2000’s, with the broad-
ening of commercial radio-frequency (RF) bandwidth resulting
in more resolvable multipaths, does the utilization of time
reversal for extensive consumer applications using RF become
possible [3].

With the ubiquity of RF radios in modern times, multipaths
are abundant, and time reversal embraces multipaths, in con-
trast to most existing techniques that often treat multipaths as
nuisances to be eliminated. Essentially, each multipath may
contain valuable and distinct information along its pathway,
rendering each multipath signal akin to a virtual sensor [4].
Consequently, one can imagine that the multitude of multipaths
encompassing our surroundings can serve as virtual sensors
that can be harnessed at will, offering new degrees of freedom
for our utilization, which may not have been previously
realized [5] [4].

The principle of time reversal in physics states that when
a sufficient number of multipath signals are captured and
time-reversed, they coalesce into a singular focal spot on
a wavelength scale, resulting in a concentration of power
derived from each individual multipath. In particular, when
Receiver A emits a radio impulse in a multipath environment,
Transmitter B receives a profile of multipaths. If Transmitter
B time-reverses the profile, reversing the order of arrival such
that the last goes first and the first does last, then all the
multipath signals will converge at Receiver A constructively
with coherent phase, resulting in the accumulation of energy
at the precise focal spot [1]. As we will see in the sequel, this
is just the beginning of what time reversal can offer.

Fig. 1. Principle of Time Reversal.

II. FROM PHYSICS TO SYSTEM THEORY

From a systems theory perspective, as depicted in Fig. 1,
the time-reversal effect can be understood as a flawless decon-
volution process, where the surrounding space functions as an
analog “computer” with infinite precision, compensating for
each multipath signal received by Transceiver B and reverting
it back to an impulse at Transceiver A. The presence of hun-
dreds of thousands of multipaths is not uncommon. Achieving
such a flawless deconvolution process is unattainable in digital
implementations due to limitations in computing power and
precision. It is worth noting that in wireless communications,
typically only the 5-10 major multipaths are retained for
channel equalization [6].

The perfect deconvolution results in the equalization of the
channel to a distortion-free impulse response. This implies
that, during time-reversal operations between the two parties,
the surrounding walls and obstacles appear to have vanished.
It is akin to the scenario where the two parties are communi-
cating in the outer space without any surrounding objects, as
if nothing stands between them.

It can be inferred that multipaths carry valuable indoor
structural information and can be exploited to overcome
obstacles. Considering that each multipath contains unique
information in its own pathway, an alternative perspective
is that the focusing spot is the location where information
is aggregated from all the multipaths. Since each and every
multipath contains certain information in their own pathway,
another way to see the focusing spot is that it is where all
the information, besides power, was aggregated from all the
multipaths.



III. BREAKING THE CURSE OF METER ACCURACY

Let h(k; T⃗ → R⃗0) denote the k-th tap of the channel
impulse response (CIR) from T⃗ to R⃗0, where T⃗ and R⃗0

denotes the coordinates of the transmitter (TX) and receiver
(RX), respectively. In time-reversal transmission, the RX at
R⃗0 first transmits an impulse and the TX at T⃗ captures the
CIR from R⃗0 to T⃗ . The TX then transmits back the time-
reversed and conjugated version of the captured CIR, i.e.,
h∗(−k; R⃗0 → T⃗ ), where ∗ denotes complex conjugation.
With channel reciprocity, meaning the forward and backward
channels are identical, the received signal at any location
R⃗ when the time-reversal waveform h∗(−k; R⃗0 → T⃗ ) is
transmitted can be written as

s(k; R⃗) =

L−1∑
l=0

h(l; T⃗ → R⃗)h∗(l − k; R⃗0 → T⃗ ), (1)

where L denotes the number of resolved multipaths. When
R⃗ = R⃗0 and k = 0, we have s(0; R⃗) =

∑L−1
l=0 |h(l, T⃗ →

R⃗0)|2 with all multipath components (MPCs) added up coher-
ently, i.e., the signal energy is refocused at a particular spatial
location at a specific time instance. This phenomenon is known
as the time-reversal focusing effect.

In order to determine if it corresponds to the precise
focusing spot, the Time-Reversal Resonating Strength (TRRS)
[7] between the CIRs of two locations R⃗0 and R⃗ can be defined
as the normalized energy of the received signal when the time-
reversal waveform for location R⃗0 is transmitted:

η(h(R⃗0),h(R⃗))

=
s(0; R⃗)√

L−1∑
l1=0

|h(l1; T⃗ → R⃗0)|2
√

L−1∑
l2=0

|h(l2; T⃗ → R⃗)|2
, (2)

where we use h(R⃗) as an abbreviation of h(l; T⃗ → R⃗), l =
0, ..., L− 1, when T⃗ is fixed.

This allows for determining the exact match by utilizing
the CIR or its Fourier transform, commonly referred to as the
channel state information (CSI) in Wi-Fi settings, thereby en-
abling precise location determination without directly measur-
ing the physical power on devices. In subsequent discussions,
CSI will be used to refer to the multipath profile.

With a sufficiently large bandwidth, or equivalently, when
the number of multipaths is significantly large in an indoor
environment, each location will have a unique multipath profile
signature [8], which can be utilized for indoor positioning
purposes. Time-reversal focusing can achieve accuracy of 1-2
centimeters using a single transmitter and receiver, even in a
non-line-of-sight (NLOS) environment at the 5.4 GHz Wi-Fi
ISM band. This is because time-reversal focusing utilizes hun-
dreds or even thousands of degrees of freedom (multipaths),
resulting in significantly improved location accuracy, even in
complete NLOS environments.

It was already well established that time of flight, signal
strength, and triangulation methods could be used in wireless

networks to locate a device. However, these location tech-
niques generally require multiple sources and the accuracy is
typically limited to meters, where the curse of meter accuracy
was a result of having only three degrees of freedom from
triangulation, and the technique only works under line-of-sight
(LOS) conditions [9].

In contrast, time-reversal focusing leverages hundreds or
even thousands of degrees of freedom (multipaths) resulting in
much higher location accuracy while functioning in a complete
NLOS environment – the more multipaths the better, contrary
to the prior scientific beliefs and approaches! It can achieve
accuracy at the millimeter level when using higher frequency
ranges [9].

IV. A HINT TO WIRELESS SENSING

As discussed above, different locations have their unique
multipath profile signatures. In a similar way, a change in
the environment, such as a door closing or opening, can
significantly impact the multipath profiles and result in a shift
in the time-reversal focusing point to a different location. If
both locations can be accurately determined using TRRS, it
enables the detection of an event, such as a door opening
or closing. This phenomenon also enables the determination
of changes in the environment or monitoring events using
CSIs. Additionally, it can be utilized to differentiate radio-
based human biometrics.

However, such a fingerprinting approach mentioned above
has a drawback - it requires training to determine events by
matching CSIs. If the environment is changing, even slowly,
it may require frequent retraining, which limits the practical
applications of these schemes.

It is logical to ask whether training can be avoided. The sta-
tistical principles of the time-reversal focusing effect discussed
in the sequel offer the answer.

V. TOWARDS INDOOR SPEED ESTIMATION

Speed estimation is a crucial tool with wide-ranging appli-
cations. Outdoor environments provide ample LOS conditions
for radar, telescopes, and satellites to directly observe or
explore using the Doppler Effect. However, there is currently
no simple and reliable/accurate method for indoor speed esti-
mation under NLOS conditions. We will see that when a large
number of multipaths are present, the time-reversal focusing
spot exhibits a stationary behavior in its power distribution,
following a Bessel function distribution [7]. Such a property
can be used for speed estimation indoors.

Assume that all the electromagnetic (EM) waves propagate
in a far-field zone, and each MPC is approximated by a plane
EM wave. As illustrated in Fig. 2, the receive antenna is
assumed to locate in the origin and each MPC is denoted by
a point A. The coordinates of each MPC are determined by
its angle of arrival θ and total traveled distance r, and G(ω)
denotes the power gain with ω = (r, θ). In a rich-scattering
environment, ω can be assumed uniformly distributed in space
and the total number of MPCs is large and the received signal
is a scalar sum of the electric field of the impinging EM waves.
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Fig. 2. Illustration of MPCs in polar coordinates [7], with the receive antenna
located in the origin and each MPC denoted by a point A. The coordinates of
each MPC are determined by its angle of arrival θ and total traveled distance
r, and G(ω) denotes the power gain with ω = (r, θ).

For any point R⃗ in a source-free region with constant mean
electric and magnetic fields, the channel impulse response
when a rectangular pulse is transmitted can be written as

h(t; T⃗ → R⃗)

=
∑
ω∈Ω

G(ω)ej(2πf0(t−τ(ω))−ϕ(ω)−k⃗(ω)·R⃗), (3)

where τ(ω) = r/c is the propagation delay of the MPC
ω, f0 is the carrier frequency, Ω is the set of MPCs, ϕ(ω)
is the change of phase due to reflections, k⃗(ω) is the wave
vector with amplitude k = c/f0, and c is the speed of light.
Accordingly, the l-th tap of a sampled CIR at location R⃗ can
be expressed as

h(l; T⃗ → R⃗)

=
∑

τ(ω)∈[lT−T
2 ,lT+T

2 )

G(ω)ej(2πf0∆τ(l,ω)−ϕ(ω)−k⃗(ω)·R⃗) (4)

where T is the channel measurement interval and ∆τ(l, ω) =
lT − τ(ω) for l = 0, 1, ..., L− 1.

The received signal at each point R⃗ when the time-reversal
waveform h∗(−l; R⃗0 → T⃗ ) is transmitted can be approxi-
mated from (1) as

s(0; R⃗) ≈
L∑

l=1

|G(m)|2e−jk⃗(m)·(R⃗−R⃗0). (5)

When the bandwidth is sufficiently large, without loss of
generality, with multipaths arriving from all directions such
that the power distribution of MPC is uniform in direction
θ, meaning G(ω) only depends on r and approximately the
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Fig. 3. Comparison of the TRRS distribution between experimental results
and the theoretical result [7], where the carrier frequency of the transmitted
signal is at 5.8 GHz with λ = 5.17 cm.

same for any θ [7], the received signal s(0; R⃗) can further be
approximated as

s(0; R⃗) =
∑
ω∈Ω

|G(ω)|2e−jk⃗·(R⃗−R⃗0)

≈
∫ 2π

0

P (θ)e−jkd cos(θ)dθ

= PJ0(kd), (6)

where the discrete sum is approximated by a continuous
integral, Ω stands for the set of all significant MPCs, J0(x)
is the 0th-order Bessel function of the first kind J0(x) =
1
2π

∫ 2π

0
exp(−jx cos(θ))dθ, and d is the Euclidean distance

between R⃗0 and R⃗. What (6) says is that the power distribu-
tion at the time-reversal focusing spot is of Bessel function
distribution.

As practical power measurement is not feasible, we can
resort to the TRRS, which is a type of cross-correlation that
allows us to measure this effect via CSIs. For R⃗ = R⃗0, it
degenerates to the case of d = 0 and thus s(0; R⃗0) ≈ P ,
which is the peak of the focusing spot. As a result, the TRRS
defined in (2) can is given by [7]

η(h(R⃗0),h(R⃗)) = J0(kd). (7)

Essentially, the requirement is for an RF device to pos-
sess a sufficiently large bandwidth to capture a substantial
number of multipaths, regardless of the surrounding geometry.
Remarkably, the time-reversal focusing spot is not a point, but
rather possesses a structure that is independent of location and
environment. This property renders it ideal for indoor speed
estimation.

Fig. 3 illustrates two experimental results obtained at Loca-
tion 1 and Location 2, which are 10m apart. The distance d
from each predefined focal spot is varied from 0 to 2λ. The
measured TRRS distribution functions exhibit good agreement
with the theoretical prediction. Specifically, the positions of the
peaks and valleys in the measured curves match to those of
the theoretical curve. Since the TRRS distribution function de-
pends only on the distance between two points, without abuse
of terminology, we can simply use η(d) = J0(kd) to represent
the TRRS approximation between two points separated by
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Fig. 4. Multipath model for rich-scattering indoor environments, where
objects scatter the signal and produce many paths [10].

a distance d. The shape of the TRRS distribution function
η(d) = J0(kd) is determined solely by the wave number
k which is independent of specific locations. Therefore, the
TRRS distribution function can be used as an intrinsic ruler
to measure distances in space.

For instance, consider an RX moving along a straight line
at a constant speed v starting from location R⃗0, and a TX
keeps transmitting the time-reversal waveforms corresponding
to R⃗0 at regular intervals. The TRRS measured at the RX is a
sampled version of η(d) and exhibit the Bessel-function-like
pattern. We can estimate the speed of the RX by measuring the
time t̂ it takes for the RX to reach the first local peak starting
from R⃗0. The speed can be estimated as v̂ = (0.61λ)/t̂, where
d ≈ 0.61λ is the theoretical distance corresponding to the first
local peak of the Bessel-function-like pattern [7].

Many existing techniques, including the Doppler Effect,
experience performance degradation in the presence of mul-
tipaths, even under LOS conditions. Finally, the speed and
distance can now be accurately and reliably estimated in
indoor environments. Contrary to prior scientific approaches,
the performance improves with an increase in the number of
multipaths.

An immediate application that can be observed is indoor
tracking. IoT devices can utilize CSIs from ambient radios to
calculate their own speed. By utilizing an inertial measurement
unit, which is commonly available in smartphones or IoT
devices for directional information, in conjunction with a
geolocation map, an unlimited number of users can be tracked
[7].

VI. VIRTUAL TIME-REVERSAL EFFECT

As discussed above, speed estimation with one device (e.g.,
RX) moving is feasible. However, in cases where there is no
active source to generate a physical time-reversal effect, what
can be done? Fig. 4 illustrates that when an object moves in
a space filled with ambient radio waves, it appears as if there
are multiple dynamic scatterers on the object, moving at the
same velocity. Each dynamic scatterer can be considered as
a virtual passive source with low radiation power. Therefore,

resorting to collective statistics is necessary to uncover their
common collective behavior.

According to the superposition principle of EM waves, the
CSI H(t, f) can be decomposed as

H(t, f) =
∑

i∈Ωs(t)

Hi(t, f) +
∑

j∈Ωd(t)

Hj(t, f) + ε(t, f), (8)

where Ωs(t) represents the set of static scatterers, Ωd(t)
represents the set of dynamic scatterers, and Hi(t, f) denotes
the part contributed by the i-th scatterer. The noise term ε(t, f)
is the additive white Gaussian noise with variance σ2(f) and is
statistically independent of Hi(t, f) [11]. The decomposition
is based on the fact that each scatterer acts as a “virtual
transmitter” scattering the EM waves in all directions, and
the received EM waves add up at the receive antenna from
the reflecting off the interior objects in indoor environments.
Consequently, H(t, f) measures the sum of the electric fields
of all the incoming EM waves. In practice, assuming that both
the sets Ωs(t) and Ωd(t) change slowly over a sufficiently
short period of time, they can be approximated as time-
invariant sets.

Without loss of generality, let us consider a 2-D scattering
model where all the scatterers are within the same horizon-
tal plane. Due to channel reciprocity, EM waves traveling
in both directions undergo the same physical perturbations,
such as reflection, refraction, diffraction. Thus, if the re-
ceiver transmits EM waves, the CSI “measured” at the i-
th scatterer or “virtual transmitter” would be identical to
Hi(t, f). As Hi(t, f) actually measures the electric fields,
E⃗i(t, f) =

∫ 2π

0
F⃗ (θ, f) exp(−jk⃗· v⃗it)dθ, of the incoming EM

waves, where the speed of the i-th scatterer is vi, Hi(t, f) can
be expressed as

Hi(t, f) =

∫ 2π

0

Fi(θ, f) exp (−jkvi cos(θ)t) dθ, (9)

where Fi(θ, f) denotes the complex channel gain of the MPC
from the direction θ for the i-th scatterer, and k is the wave
number.

Note that the mean of Hi(t, f) is zero, which is represented
as E[Hi(t, f)] = 0, where E[·] denotes the expectation
operator. The covariance of two CSI values with time lag τ
can be expressed as [11]

Cov [Hi(t, f), Hi(t+ τ, f)] = E [Hi(t, f)H
∗
i (t+ τ, f)]

≈ 2πσ2
Fi
(f)J0(kviτ), (10)

where J0(·) is the 0th-order Bessel function of the first kind,
σ2
Fi
(f) is the variance of Fi(θ, f), and Fi(θ, f) is assumed

to be a circular-symmetric Gaussian random variable with the
same variance for ∀θ. The ACF of Hi(t, f) with time lag τ ,
denoted as ρHi(τ, f), is derived as

ρHi(τ, f) =
Cov [Hi(t, f), Hi(t+ τ, f)]

Cov [Hi(t, f), Hi(t, f)]

= J0(kviτ). (11)

Consider that only one object is moving, and the speeds
of all the scatters caused by the object are approximated to



be the same vi = v, for ∀i ∈ Ωd. Then, the autocorrelation
function (ACF) of the CSI H(t, f) with time lag τ , denoted
as ρH(τ, f), can be obtained as

ρH(τ, f) = α(f)J0(kvτ), (12)

where α(f) is the gain of each subcarrier f . When all frequen-
cies are considered, the α(f) factor will be aggregated and
disappear. Equation (12) is equivalent to (7), where the only
difference is that (7) is viewed from the power distribution
perspective with d = vτ .

VII. REFLECTION

It is not surprising that the ACF also follows the Bessel
function, as it is also a second-order statistics like TRRS and
shares the same mathematical expression. In essence, a moving
object can be regarded as a collection of virtual sources, and
their combined strength can be revealed through statistical
electromagnetics, as a result of a virtual time-reversal focusing
effect [9] [11]!

Now the active and passive sources are integrated into a
unified time-reversal framework in that we can state that the
second order statistics, either TRRS of active sources or ACF
of passive sources, exhibits Bessel function distributions owing
to the time-reversal Bessel power distribution at the focusing
spot. We can simply write

ρ(τ) = J0(kvτ), (13)

where ρ(·) stands for the second-order statistics of time-
reversal effects, τ is the time lag, k = c/f is the wave number,
and v is the speed, which can be estimated accurately and
reliably under multipath conditions, even for indoor NLOS
conditions.

If one relooks at (6), he/she will find that this equation is
satisfied when there are many multipaths uniformly arriving
from every direction, which is the case for multipath-rich in-
door scenarios. It implies the received power distribution at the
receiver should also follow the Bessel distribution, even when
there is no time reversal operation. It has been observed long
ago by Clarke [12] that the spatial autocovariance function of
the electric field under multipath-rich environment is a Bessel
function. But he fell short of concluding this phenomenon
was due to the power distribution is of Bessel function. A
reason was because no one looks at it at one particular time
instance like the moment of time reversal focusing to see the
effect. In communications, signals keep coming in so that
every Bessel power distribution is collated and aggregated
resulting in seeing only the power envelope, i.e., the effect
of each individual Bessel function disappears. Time reversal
allows us to see a particular instant when all the multipaths all
come together to clearly exhibit the Bessel effect. But at every
instant, there are still all the multipaths coming and mixing
together, albeit not completely in phase like time reversal, and
the power distribution is still Bessel. That helps explain why
the spatial correlation under multipath conditions as observed
by Clarke is Bessel.

VIII. ENABLING RELIABLE WIRELESS SENSING

The relation ρ(τ) = J0(kvτ) can be evaluated with CSIs,
which are readily available in the ambient radio waves of
ubiquitous Wi-Fi and 5G/6G systems [13]. Falls have been
a significant concern in elder care due to their potential for
severe consequences. Falls are characterized by a distinctive
motion, wherein the body continues to accelerate and then
experiences a sudden, forceful deceleration, setting them apart
from other typical human motions (see Fig. 5). This distinctive
feature can be exploited for accurate fall detection, provided
that the speed can be accurately measured [11].

Despite being bipedal, each individual walks in a distinct
manner. Gait patterns (see Fig. 6), including stride length and
walking cadence, can be deduced from speed information [10].
Human motions can also be inferred from the motions of pets
or machines (e.g. iRobot, fan, etc.). Motion statistics can be
used to sensitively detect slight human motions for presence
or intrusion detection, and for automatic control of lightbulbs,
TVs, air conditioners for energy management. Breathing can
also be easily monitored for sleep monitoring, all without the
need for wearables.

Millimeter wave radio can be utilized to pick up heartbeats
for inferring heart rate variability, sound for enhancement or
separation, and other applications such as gesture, handwriting,
and keystroke recognition, all using only commodity Wi-Fi
without the need for wearables.

IX. RELATION TO MASSIVE MIMO
We have seen a powerful/universal time reversal-based

statistical tool for speed estimation by treating the massive
multipaths (indoors) as virtual sensors. Is it possible to com-
pare the utilization of hundreds of thousands of virtual sensors
with a large number of real antennas in massive MIMO as
commonly used in 5G/6G communications? To characterize
the power distribution of the focusing effect and investigate its
relationship with a target’s motion, similar to the above, we
can define the ACF of the received signal in massive MIMO
similarly.

Assume a receiver is located on a mobile object/target
and receives a signal transmitted from a base station (BS)
with M antennas, where rt denotes the receiver’s location at
time t. Ae denotes the aperture of the antenna. The received
signal comprises both LOS and NLOS components and can
be expressed as follows [14]:

y(t) = yL(t) + yN(t) + n(t),

yL(t) =
√
KL

M∑
m=1

exp(j(k|xmrt|+ ϕm))

4π|xmrt|
,

yN(t) =
√
KN

N∑
n=1

exp[j(ωdtcosαn + ϕn)],

(14)

where yL(t) and yN(t) represent LOS and NLOS component
with power coefficient KL and KN, and N is the total number
of NLOS signal components. k denotes the wave number.
ωd is the maximum Doppler frequency. xm and rt are the
coordinates of the m-th antenna and the receiver at time t,
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Fig. 5. Speed and acceleration (Acc.) for different activities and subjects (Sub. 1 and Sub. 2) [11].
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normal human walking, a subject’s speed experiences an increase then a
decrease, resulting in a speed peak for each step [10]. The carrier frequency
is at 5.8 GHz with a bandwidth of 40 MHz and a sampling rate 1500 Hz.

respectively, |xmrt| denotes the distance between xm and rt.
n(t) is the additive Gaussian noise while ϕm is the phase
distortion of the m-th LOS signal. αn and ϕn are the DOA
and phase distortion of the n-th NLOS signal component. In
general, ϕm, αn, and ϕn can be assumed as i.i.d uniformly
distributed over [−π, π).

Based on (14), the ACF of the received signal can be
expressed as

ηy(r0, rs) = E[y(t0)y∗(ts)] ≈ ηyL + ηyN + ηn, (15)

where ηyN = KNNJ0(kd) is similar to the derivation in
Section V. E represents expectation operator and J0(·) is the
0-order Bessel function while d denotes the distance between
r0 and rs. The ACF of the LOS signal can be given by [14]

ηyL =
Aeexp(jkϵ)

z
sinc(

kξAe

2L
), (16)

where ϵ and ξ represent the range and cross-range between r0
and rs, z represents the inner element space in the transmit
antenna array, sinc(t) = sin(t)/t is the sinc function, under
the far-field condition. Then, the ACF of the received signal
can be expressed as

ηy(r0, rs) =

Aeexp(jkϵ)
z

sinc(
kξAe

2L
) +KNNJ0(kd) + σ2I, (17)

where σ2 is the power spectral density of the noise n(t).
It has been shown in [14] that KNNJ0(kd) decays much

faster than sinc(kξAe

2L ). Therefor the LOS component domi-
nates the effect and the J0(kd) term can be ignored. When
there is no LOS component, it degenerates to the same time-
reversal effect discussed in prior sections. In either case, the
speed estimation can be done similarly as well.

X. CONCLUSIONS

Most existing techniques rely on LOS observations and
attempt to minimize the effects of multipath propagation. In
contrast, time reversal embraces and strives on multipaths,
the more the better, contrary to most existing paradigms. It
offers accurate and reliable speed estimation and uncovers
new thinking and solutions ideal for indoor applications,
especially under NLOS conditions, long considered difficult
and challenging due to multipath effects.

Peter Siegel stated in [9] that the statistical effects of time-
reversal that can be described by the simple yet beautiful
equation ρ(τ) = J0(kvτ) “represents a unique solution to
the almost two-century long quest for some new physics that
could equal, and in this case surpass, the ubiquitous frequency
vs. speed relationship between a moving object and a wave-
based source first described by Christian Doppler in 1842.”
Time reversal strives with multipaths, while on the other hand,



Doppler Effect does without. Therefore, both complement
each other well and offer two distinct approaches to unlock
unlimited possibilities in future applications.
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