
1

DeFall: Environment-Independent Passive Fall
Detection using WiFi

Yuqian Hu, Graduate Student Member, IEEE, Feng Zhang, Member, IEEE, Chenshu Wu, Senior Member, IEEE,
Beibei Wang, Senior Member, IEEE, and K. J. Ray Liu, Fellow, IEEE

Abstract—Fall is recognized as one of the most frequent
accidents among elderly people. Many solutions, either wear-
able or non-contact, have been proposed for fall detection
recently. Among them, WiFi-based non-contact approaches are
gaining popularity due to the ubiquity and non-invasiveness.
The existing works, however, usually rely on labor-intensive
and time-consuming training before it can achieve a reasonable
performance. In addition, the trained models often contain
environment-specific information and thus cannot be generalized
well for new environments. In this paper, we propose DeFall, a
WiFi-based passive fall detection system that is independent of
the environment and free of prior training in new environments.
Unlike previous works, our key insight is to probe the physio-
logical features inherently associated with human falls, i.e., the
distinctive patterns of speed and acceleration during a fall. DeFall
consists of an offline template-generating stage and an online
decision-making stage, both taking the speed estimates as input.
In the offline stage, augmented dynamic time warping (DTW)
algorithms are performed to generate a representative template
of the speed and acceleration patterns for a typical human fall.
In the online phase, we compare the patterns of the real-time
speed/acceleration estimates against the template to detect falls.
To evaluate the performance of DeFall, we built a prototype
using commercial WiFi devices and conducted experiments under
different settings. The results demonstrate that DeFall achieves
a detection rate above 95% with a false alarm lower than 1.50%
under both line-of-sight (LOS) and non-LOS (NLOS) scenarios
with one single pair of transceivers. Extensive comparison study
verifies that DeFall can be generalized well to new environments
without any new training.

Index Terms—Fall detection system, channel state information,
WiFi sensing, speed estimation

I. INTRODUCTION

As the population ages worldwide, our society should take
more and more arduous responsibilities to provide medical
care for the elderly. Among all of the accidents in the elderly,
falls represent the most frequent ones. The report from the
World Health Organization (WHO) indicates that 20% - 30%
of older people who fall suffer moderate to severe injuries [1].
Falls can even cause death. In all regions of the world, death
rates caused by falls are the highest among adults over the age
of 60 years [1].

Moreover, the damage caused by the falls is not only
reflected in the immediate injury of the body, but also in
all subsequent adverse effects caused by the lack of timely
assistance, especially for those who live alone. Therefore,
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a real-time indoor fall detection system with timely and
automatic alarms is highly in need, which could potentially
save lives by requesting external help timely.

The great importance of fall detection has driven the de-
velopment of various systems, which can be roughly divided
into two categories: wearable and non-contact systems. The
wearable techniques require users to wear special devices,
including ECG sensors, barometric sensors, accelerometers,
gyroscopes, and smartphones, etc., to track the motion of
their bodies [2]–[6]. However, in addition to the potential false
alarms of wearable systems, it is cumbersome and sometimes
impractical to ask users especially the elder people to carry
specialized sensors [7], which encourages the development of
non-contact systems. The most common non-contact systems
are vision-based [8]–[13]. Typically, an array of cameras,
infrared sensors, or depth cameras like Kinect need to be
deployed to monitor an area of interest. While high accuracy
could be achieved under favored settings of good lighting
condition and clear field of view, vision-based systems are
limited by the visibility requirement and also bring privacy
concerns, especially in some specific environments such as
the bathrooms and bedrooms.

Inspired by the fact that the radio frequency (RF) signals
can be altered by the propagation environment [14] [15], the
concept of wireless sensing presents the opportunities of sens-
ing human activities passively and many wireless technologies,
such as Doppler radar and WiFi signals have been explored
[16]–[23] to detect falls. However, the existing RF-based
approaches either have limited coverage or require re-training
in new environments, which is impractical in commercial
indoor fall detection systems. We compare different types of
RF-based systems in detail in Section II.

To address this issue, in this work we propose DeFall, a
WiFi-based robust and environment-independent fall detection
system. The key insight that sets apart DeFall from prior
works is the exploitation of the physiological patterns of
body speed and accelerations, rather than less explainable
data-driven features used previously. Noticing that human
falls experience different speed/acceleration from other daily
activities, we propose to utilize the unique patterns of speed
and acceleration to recognize falls. Recent work [24] has
shown the feasibility to extract speed information passively
from WiFi signals even in non-line-of-sight (NLOS) envi-
ronments, which allows us to build DeFall upon the WiFi-
based speed estimation. Since a fall involves a unique pattern
of speed transition and lasts a certain duration, DeFall uses
the time series of speed/acceleration captured continuously
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instead of the instantaneous values for identifying fall events.
This can tremendously reduce the unwanted false alarm in a
real environment. However, as we deal with time series, the
temporal variability in time series brings up another challenge.
To adapt to the non-linear compression or stretching over time,
we apply the augmented dynamic time warping (DTW) based
algorithms for the time series processing.

DeFall consists of two key components: the offline template-
generating stage and the online decision-making stage. In the
offline stage, a representative template for speed and accelera-
tion series is generated. After that, the similarity between real-
time speed/acceleration series and the template is evaluated in
the online stage to detect a fall.

Since the speed and acceleration are inherent properties of
the human motion that are independent of the static back-
ground environment, DeFall needs only one-time light training
and is robust against different environments in an unsupervised
manner. Also, thanks to the rich-scattering model used in speed
estimation, the system can work very well under both line-of-
sight (LOS) and NLOS scenarios.

To evaluate the performance of DeFall, extensive experi-
ments have been conducted in a typical indoor environment
in various settings. We first use a human-like dummy with a
similar size and weight to a real human to carry out more
than 800 fall experiments under LOS and NLOS to verify the
feasibility and calculate the detection rate (DR). We also test
the false alarm rate (FAR) while the real human performs daily
indoor activities including walking and sitting. Furthermore,
more real human fall samples are applied to validate the
effectiveness of the proposed system. The experimental results
show that DeFall can achieve a DR larger than 95% on real
falls with an FAR of 1.47%, outperforming existing solutions
in terms of both accuracy and robustness. The contributions
of this work are summarized as follows:
• To the best of our knowledge, the proposed system is the

first device-free fall detector that leverages the accurate
time series of speed and acceleration estimated from WiFi
channel state information (CSI).

• The proposed system works well in both LOS and NLOS
scenarios, getting rid of the limitation of coverage while
also protecting privacy.

• Through long-term testing, the system is verified to be
robust against other daily activities as well as the falling
of objects while keeping a high detection rate on real
falls.

• Based on the performance comparison with other existing
methods, our system can work independently without any
re-training in a changing environment.

The rest of the paper is organized as follows. Section II
reviews related works. Section III presents the basic principles
of DeFall. Section IV depicts the system design and imple-
mentation. The performance of the proposed system is studied
and evaluated in Section V and Section VI. Lastly, concluding
remarks are given in Section VII.

II. RELATED WORK

Thanks to the rapid development of Internet of Things (IoT)
technologies and wireless sensing research, there are plenty

of wireless IoT applications emerging, including fall detection
systems. In this section, we review the literature on indoor
activity recognition, with particular interests in fall detection.
Existing works on passive wireless sensing can be categorized
into different groups based on the features extracted from the
wireless channel as Table I shows: radar-based, RSSI-based
and CSI-based systems.

Radar-based systems detect events relying on specialized
devices that are not readily available in homes. Many of them
infer the motion of the reflector by evaluating the Doppler
frequency shift and extract micro-Doppler signatures for rec-
ognizing finer body movements, such as activity monitoring
[25], [26], gesture recognition [37], and fall detectors [16],
[17]. Millimeter-wave (mmWave) radars, operating at higher
transmit frequencies than commercial WiFi, provide better
velocity resolution and capture more details on motion of
different body parts [27], [38], [39]. Also, Ultra-wideband
(UWB) radar, which has a high resolution due to the wide
bandwidth, has also been proposed to classify indoor ac-
tivities and detect falls [18], [19]. [18] proposes a time of
arrival (TOA)-based feature extraction approach based on the
received UWB signals. [19] approaches UWB-radar-based
fall detection by applying a convolutional long short term
memory (ConvLSTM) structure. [40] combines CNN and state
machine and adopts a large-scale dataset to detect falls in
various environments. However, although radars may have
higher ranges or frequency resolutions, they usually require
LOS for reliable operation. Therefore they can only detect
falls in a very limited coverage and are also limited by the
requirement of extra specialized dedicated devices. Further, the
speed estimation derived from Doppler shift by radars varies
for different moving directions and the heading direction of
the subject is usually predefined [41].

Some other works on activity recognition and fall detection
use commodity devices. Commercial wireless devices, such
as WiFi infrastructures, are available in most indoor spaces
and allow more flexible low-cost deployment. Chetty et al.
apply passive WiFi radar (PWR) to realize the through-the-
wall human sensing [35] and overcome the coverage limitation
of traditional radars. However, PWR, which also relies on the
principle of radars, collects Doppler information and therefore
is also direction/location dependent and requires directional
antennas [36].

Another widely-used method is using the received signal
strength indicator (RSSI) to characterize indoor activities,
either on WiFi or other wireless devices. For example, [28]
explores WiFi ambient signals for RSSI fingerprints of dif-
ferent activities. However, since RSSI measures the overall
amplitude response of multiple superposed subcarriers, it loses
the phase information as well as the detailed information of
each frequency component. Therefore it suffers from dramatic
performance degradation in complex situations due to multi-
path fading and temporal dynamics [42], limiting its stability
and reliability in practical applications.

CSI, which measures both amplitude and phase information
on different frequency components, provides finer-grained in-
formation for a propagation environment and becomes popular
in the field of wireless sensing recently. Different from the
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Methodology Existing works Limitations

Radar-based

Limited detection range
Indoor activity recognition [25]–[27] Cannot be integrated with commercial WiFi
Fall detection [16]–[19] Specialized device required

Doppler signature affected by moving direction

RSSI-based
Indoor activity recognition [28], [29]

Coarse granularity

Fall detection [30]
High sensitivity to environmental changes
Multiple devices required

CSI-based
Indoor activity recognition [31]–[33] Re-training required in new environments
Fall detection [20]–[23] Performance degrades with LOS path blocked

PWR
Indoor activity recognition [34]

Extra peripherals and directional antennas required

Human sensing [35], [36]
Doppler signature affected by moving direction
Stable reference channel required

TABLE I: Summary on related works.

Reference Features
Claimed
DR

Claimed
FAR

Environment-
independent

WiFall [20] Variance 87% 18% 7

RT-Fall [21] Phase difference 91% 11% 7

FallDeFi [22] Spectrogram 94.33% 14.92% 7

TL-Fall [23] Frequency 86.83% 15.29% 7

DeFall Speed 95.80% 1.47% 3

TABLE II: A brief summary of different CSI-based approaches
to fall detection and the claimed performance.

mechanism of PWR, CSI is the standard information that
can be extracted from commodity WiFi devices. By analyzing
CSI accessible on mainstream devices nowadays, one could
monitor indoor activities and detect indoor events, such as
Wi-chase [31], CRAM [32] and TRIEDS [33]. In [20], Wang
and Han et al. design WiFall, a WiFi-based unobtrusive fall
detection system that extracts features from the CSI amplitude
information to detect falls, while RT-Fall [21] exploits the
efficacy of phase difference for activity segmentation and
fall detection. FallDeFi [22] uses conventional short-time
Fourier transform (STFT) to extract time-frequency features
to sense the environmental changes and detect falls. Sensing-
Fi [43] detects falls based on WiFi signals together with
ground-mounted accelerometer measurements to capture floor
vibrations. Unfortunately, as illustrated in Table. II, since the
features extracted in the existing WiFi-based fall detection
systems above are environment-dependent, the trained clas-
sifiers in these works suffer from the impact of environmental
changes and cannot be generalized well to new environments
without performance degradation. Re-training is required in
these systems when the environmental settings change, which
makes them impractical as it is not suitable to ask users to fall
and collect training data every time the placements of furniture
or the deployments of the devices get changed. TL-Fall [23]
applies transfer learning to mitigate environmental influence

and reduce the training workload, while light re-training is still
needed in new environments and consecutive activities cannot
be handled as activity segmentation is required before signal
processing. In addition, an earlier version of this work has
been published in [44] with a fixed sampling rate which may
not be energy-efficient as the proposed fall down detection
system requires a high sampling rate.

To address these challenges, in this work we propose DeFall
that explores the inherent features of a fall and works well
with only light training overhead and adaptive sampling rate
based on a novel motion detector that is independent of the
environment and can be put into use once deployed in any
new environment without any re-training or calibration.

III. PRELIMINARIES

In this section, the distinct speed pattern of a fall event
is first presented. Then the definition of physical layer CSI
is reviewed, and further, the principles of CSI-based motion
detection and speed estimation are illustrated.

A. Distinct Characteristics of Fall Events

Different types of falls might happen in our daily life.
Some are assisted falls occurring where the subject is assisted
by another person or other supporting objects during the
falling process. Unassisted falls occur unexpectedly without
any support due to extrinsic environmental factors such as
spills on the floor or intrinsic risk factors such as impaired
gait. Compared to assisted falls, unassisted falls are closer to
free falls and have larger speeds at the moment of hitting the
ground, leading to a higher risk of causing severe injuries
or even death [45]. Therefore the system we propose focuses
mainly on detecting unassisted falls and especially those when
the subjects fall from a standing position which produces the
largest speed.

Speed and acceleration are two characteristics that are
usually used to describe motion. Intuitively, fall can be viewed
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Fig. 1: Indoor rich-scattering model.

as a type of abnormal indoor event with abnormal speed and
acceleration and therefore they are both considered as the
unique characteristics that help distinguish falls from other
daily activities. The uniqueness resides not only in the absolute
values of speed and acceleration during a fall but also in how
they change over time. More specifically, as a human falls to
the ground, his/her body will experience a rapid acceleration
first. Once the body hits the floor, the body speed reduces
to nearly zero sharply. In fact, most of the unexpected falls
exhibit a similar pattern and this implies the feasibility of
developing an environment-independent system by monitoring
the speed and acceleration variation, which is the foundation
of DeFall.

B. Speed Estimation from WiFi CSI

In wireless communication, CSI, which also refers to chan-
nel frequency response (CFR), describes the propagation of
the signals from the transmitter (Tx) to the receiver (Rx). The
estimate of the CSI over a subcarrier with frequency f at time
t can be represented as

H(t, f) =
Y (t, f)

X(t, f)
, (1)

where X(t, f) and Y (t, f) are transmitted and received sig-
nals. The transmitted WiFi signals experience multiple re-
flections in their propagation in indoor environments, and
therefore CSI contains a lot of useful information on the
channel conditions, which implies that we could capture the
changes of the surrounding environment through CSI.

Since the unique pattern of the series of speed is utilized,
it is critical to have an accurate and reliable estimate of the
speed based on WiFi CSI, which is not trivial due to the multi-
path effects of the indoor propagation. Some device-free CSI-
based speed estimators [46]–[48] have been proposed and most
of them make use of the Doppler frequency shift (DFS) to
calculate the speed of the human body, which have several
limitations. First, DFS-based methods utilize the reflection
model, assuming that the human body is simplified as a single
reflector and produces only one dominant reflection path,
which usually does not hold in a practical indoor environment
with rich multi-path propagation. Second, to make sure the
direct reflection path from human body has strong enough
energy to be perceived, the existing works are limited to
the LOS coverage since the moving body should be able to
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Fig. 2: Spatial ACF and its differential for EM wave compo-
nents.

be “seen” by both Tx and Rx. Third, as indicated by [46],
DFS induced by human motion is not only related to the
motion speed but also depends on the relative location and
direction with respect to the link. In addition, DFS-based speed
estimators take CSI phase into account, while the phase of CSI
on commercial WiFi devices cannot be measured accurately
due to the phase synchronization errors between the WiFi Tx
and Rx [49].

Inspired by WiSpeed [24], in this work we assume a
practical rich-scattering environment, as shown in Fig. 1,
and estimate the speed based on a statistical model of EM
wave theory, which only makes use of the CSI magnitude
information.

Specifically, the CSI magnitude can be measured through
CSI power response G(t, f) defined as

G(t, f) ,| H(t, f) |2= ξ(t, f) + ε(t, f), (2)

where ξ(t, f) = ‖ ~ERx(t, f)‖2, and ~ERx(t, f) denotes the
propagated signals. ε(t, f) denotes the additive noise, and
ξ(t, f) and ε(t, f) are assumed to be independent of each other.

It has been shown in [24] that the speed of a moving object
can be reliably estimated by evaluating the autocorrelation
function (ACF) of G(t, f). The theoretical ACF of G(t, f),
ρG(τ, f), can be derived as

ρG(τ, f) =
σ2
ξ (f)

σ2
ξ (f) + σ2

ε (f)
ρξ(τ, f) +

σ2
ε (f)

σ2
ξ (f) + σ2

ε (f)
δ(τ),

(3)
where τ is the time lag of the ACF. σ2

ξ (f) and σ2
ε (f) are

the variances of ξ(t, f) and ε(t, f), respectively. ρξ(τ, f) and
Dirac delta function δ(τ) are the ACFs of ξ(t, f) and ε(t, f).
When τ 6= 0, we have δ(τ) = 0 and ρG(τ, f) can be further
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derived based on the statistical theory of EM waves [50] as

ρG(τ, f) =
∑

u∈{x,y,z}

(C1(f)ρEu(τ, f) + C2(f)ρ2Eu(τ, f)),

(4)
where C1(f) and C2(f) are scaling factors determined by
the power reflected by all scatterers. ρEu(τ, f) is the ACF of
~ERx(t, f) in u-axis direction where u ∈ {x, y, z}.

For the i-th dynamic scatterer that moves at speed vi
along z-axis, the scattered signal is denoted as ~Eiu(t, f).
Then the components of its ACF ρEiu(τ, f) in {x, y, z}-
axes can be expressed as the following closed-form equations,
respectively:

ρEix(τ, f) = ρEiy (τ, f)

=
3

2

sin(kviτ)

kviτ

(
1− 1

(kviτ)2
)

+
3

2

cos(kviτ)

(kviτ)2
,

(5)

ρEiz (τ, f) =
3

(kviτ)2
( sin(kviτ)

kviτ
− cos(kviτ)

)
, (6)

where k denotes the wave number. Intuitively, the equa-
tions above have established a relationship between the ACF
ρG(τ, f) and the presence of motion and also the moving
speed.
• The relationship between ρG(τ, f) and the presence

of motion From Eqn. (3), if motion is present in the
propagation environment of WiFi signals, as τ → 0
we have δ(τ) = 0 and ρξ(τ, f) → 1 due to the
property of white noise and the continuity of motion [51].
Consequently, ρG(τ, f) → σ2

ξ(f)

σ2
ξ(f)+σ

2
ε (f)

> 0 as τ → 0.
If there is no motion, the environment is static and the
variance σ2

ξ (τ, f) = 0 and thus ρG(τ, f) = 0 as τ → 0.
Therefore the value of limτ→0 ρG(τ, f) can indicate the
presence of motion in the surrounding environment.

• The relationship between ρG(τ, f) and the moving
speed For the simple case of all dynamic scatterers
moving in the same speed and direction, without loss of
generality we can assume the moving direction is in the z-

axis and get the ρG(τ, f) as Eqn. (4) with its components
expressed in Eqn. (5) and (6). Each component and
its differential can be visualized in Fig. 2a and Fig.
2b, respectively. Observing that the first local valley of
4ρ2Eu(τ, f) , ∀u ∈ {x, y}, happens to be the first local
valley of 4ρG(τ) as well, we can extract the speed
information of the moving scatterers by locating the first
local valley of 4ρG(τ, f). Fig. 2c shows an example of
4ρG(τ) over time for a “walking” event, in which the
the first valley locations are marked by the black dots.
Fig. 2d shows a snapshot of the 4ρG(τ) in Fig. 2c.

In the case where a single subject, e.g., a human, moves within
the coverage of the pair of Rx and Tx, the dynamic signals
are dominated by the parts that are reflected by the human
torso. Therefore it is reasonable to assume that in this case,
all dynamic scatterers are moving at the same speed as well
as in the same direction, and we can estimate the speed of the
human using the proposed method to further detect a fall.

IV. DEFALL DESIGN

In this section, we depict the major modules in the DeFall
system in detail. The system mainly consists of two stages as
illustrated in Fig. 3. In the offline stage, the speed of a fall is
estimated from the WiFi CSI by applying a statistical model on
the radio propagation in an indoor rich-scattering environment.
After that, DTW-based algorithms are performed to generate
a representative template for a typical human fall. Then a fall
event is detected in the online stage by evaluating the similarity
between the patterns of real-time speed/acceleration estimates
and the representative template. In addition, an online motion
detection module is added before the fall detection module as
a pre-judgment procedure.

A. Template-Generating Stage

In the offline template-generating stage, M CSI sequences
of fall events are picked randomly and a “template database”
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S = {S1, S2, ..., SM} is built based on the corresponding
estimated speed series.

1) Challenges in building a general template: To construct
a single representative template, we perform an “average” on
the database. Since the collected data are all time sequences,
the result by direct point-to-point matching and averaging
will be easily affected by sequence shift and misalignment.
Therefore, the operation of distance measurement, as well as
series alignment, will be performed in the DTW space [52].

However, there may exist redundant speed segments of
other activities before or after the fall event, and the classic
DTW algorithm is sensitive to the endpoints of the sequences.
Therefore, the endpoints of the series should be carefully
defined and the template database cleaning is required.

2) Template database cleaning: To remove the redundancy
while adapting to the possible variability in event instances,
we resort to the band-relaxed segmental locally normalized
DTW (SLN-DTW) [53].

The basic idea of SLN-DTW is to detect low-distortion local
alignments between the objective series Sx and a series Sy
from the rest sequences {S1, S2, ..., Sx−1, Sx+1, ..., SM} by
dynamic programming [53]. The original SLN-DTW aims at
matching objective series Sx in the testing stream Sy with the
assumption that Sx coincides exactly with the target event,
which is not suitable since any of the collected series in S
may contain redundancy. Therefore band-relaxed SLN-DTW
in [53] is applied. It relaxes the boundary constraints of SLN-
DTW so that the starting and ending points of Sx can be
aligned adaptively and the common parts can be retrieved
reliably.

To be specific, let i and j represent the indices of the ob-
jective sequence Sx and the testing sequence Sy , respectively.
We can construct a grid [1, . . . , i, . . . , L1]× [1, . . . , j, . . . , L2],
where L1 and L2 denote the lengths of Sx and Sy . With
relaxed boundaries, the starting point of the optimal warping
path is allowed to be located in the starting band {(i, j)|i ∈
[1, Bs]} while the ending point is selected in the ending band
{(i, j)|i ∈ [Be, L1]). Then the accumulative distance matrix D
and the length matrix L can be generated, where the elements
of the two matrices, D(i, j) and L(i, j), represent the total
cumulative distance and path length from a starting point
(is, js) to (i, j). And the cost function is defined as the
ratio C(i, j) = D(i,j)

L(i,j) . The procedure of the band-relaxed
SLN-DTW applied for template database cleaning can be
summarized as:

Step 1 Initializing distance matrix D and length matrix L:
For ∀(i, j) where 1 ≤ i ≤ Bs, 1 ≤ j ≤ L2, we have{

D(i, j) = d(i, j)

L(i, j) = 1,
(7)

where d(i, j) is the Euclidean distance between the i-th point
in Sx and the j-th point in Sy .

Step 2 Iteration:
For ∀(i, j) where 1 ≤ i ≤ Bs and 1 ≤ j ≤ L2, minimize

C(i, j) = min
(u,v)

d(i,j)+D(u,v)
L(u,v)+1 where (u, v) ∈ {(i, j), (i −

1, j), (i, j − 1), (i− 1, j − 1)}. For each iteration, the updates
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of the corresponding D and L are

D(i, j) =

{
d(i, j), if (u, v) = (i, j)

D(u, v) + d(i, j), otherwise,
(8)

L(i, j) =

{
1, if (u, v) = (i, j)

L(u, v) + 1, otherwise.
(9)

For ∀(i, j) where Bs < i ≤ L1, minimize C(i, j) =

min
(u,v)

d(i,j)+D(u,v)
L(u,v)+1 where (u, v) ∈ {(i − 1, j), (i, j − 1), (i −

1, j−1)}. For each iteration, update the corresponding D and
L as {

D(i, j) = D(u, v) + d(i, j)

L(i, j) = L(u, v) + 1
. (10)

Step 3 Trace back:
Find the minimum C(k, j) for k ∈ [Be, L1] and trace back

along path (i, j) until i = Bs to extract the optimum path
across the central band {(i, j)|i ∈ [Bs, Be]}. After that, if
the cost to the next point is smaller than the current cost,
i.e., C(inext, jnext) < C(inow, jnow), continue tracing back.
Otherwise, stop and produce the optimum path.

Band-relaxed SLN-DTW is applied between every two
speed sequences to extract their common parts. Therefore, for
each objective series Sx ∈ {S1, S2, ..., SM}, there are M -
1 possible truncations with M -1 start indices Px,s and M -
1 end indices Px,e. And the part of Sx with indices lying
in [med(Px,s),med(Px,e)] is regarded as the sanitized speed
sequence of the fall event in sample Sx, where med(Px,s) and
med(Px,e) are medians of the start indices and end indices,
respectively. In this way, the template database is refined to
Ŝ = {Ŝ1, Ŝ2, . . . , ŜM}. Fig. 4a illustrates an instance of the
sanitized speed series by applying SLN-DTW.

3) Averaging in the DTW measure space: The M cleaned
speed series in the refined database Ŝ are then scaled to the
same length and averaged in the DTW measure space to
construct a single representative profile. The problem to find an
optimal average can be formulated as an optimization problem
that given a set of template time series Ŝ = {Ŝ1, Ŝ2, ..., ŜM},
the averaged series S̄ is the series that minimizes the sum of
squared DTW distances between S̄ and all of sequences in Ŝ
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as

S̄ = arg min
S

M∑
x=1

DTW 2(S, Sx). (11)

The DTW distance of two sequences DTW (A,B) is de-
fined as the Euclidean distance between series A and series B
along the optimal warping path as follows:

DTW (A,B) =

√√√√ |P∗|∑
p∗=1

‖A[ap∗ ]−B[bp∗ ]‖2, (12)

where P ∗ is the optimal warping path that minimizes the
normalized distance as

P ∗ = min
P

1

|P |

|P |∑
p=1

‖A[ap]−B[bp]‖2, (13)

where ap and bp are indices of A and B associated with the
p-th point on path P .

To solve the minimization problem (11) and get the optimal
average series, DTW barycenter averaging (DBA) algorithm
[54] is implemented. DBA is an iterative algorithm that
refines an average sequence S̄ on each iteration following
an expectation-maximization scheme, whose convergence has
been proved in [55]. The optimal speed time series S̄, pro-
duced by DBA, is then considered as the speed template.

Besides speed, acceleration depicts the motion during a
fall from another different point of view. To get a more
comprehensive description of the fall events, we derive an
acceleration series S̄′ from the speed template S̄ and combine
them by point-to-point stitching to generate a 2-D template
S̄2D. The efficacy of utilizing the 2-D combined template S̄2D

rather than a single 1-D template S̄ or S̄′ will be discussed in
Section VI.

B. Decision-making Stage
As mentioned in Section III-A, fall events experience dis-

tinct speed and acceleration patterns which could be used
for distinguishing falls from other indoor daily activities.
However, a high sampling rate is needed for speed estimation
[24]. To save energy and computation cost, in the decision-
making stage, a low-rate motion detection (MD) module is
included in addition to the fall detection (FD) module.

1) Motion Detection Module: As indicated in Section III-B,
limτ→0 ρG(τ, f) could be utilized as a criterion for MD. In
practice, due to the limitation of the sampling rate, we could
only use ρG(τ = 1

Fs
, f) to approximate τ → 0.

For the purpose of efficient energy-saving, the MD module
with a low sampling rate is added as a pre-detection of human
motion prior to the FD module, and the FD module is triggered
only in the presence of motion.

2) Fall Detection Module: In the FD module, we apply a
sliding window W on the incoming CSI stream. The testing
speed sequence T is estimated from the CSI series in window
W . The acceleration sequence T ′ is further derived from T ,
followed by a combination operation to form a 2-D pattern
T2D.

Then fall events can be detected by comparing the testing
time series T2D with the template S̄2D. The corresponding

Tx

Rx

(a) Devices. (b) Fall examples.

Fig. 5: Illustrations for (a) devices for data collection and (b)
examples for real falls including forward, lateral and backward
falls.

similarity of the two series is evaluated in DTW space to adapt
to misalignment of the two sequences in the time domain.

Since the fall events involving different people may expe-
rience different duration, the series segmented by a length-
fixed sliding window may also include other activities before
or after the target event, which cannot be handled by the
traditional DTW, and thus we adopt the SLN-DTW [53] again
to localize the start and end instances of an event, as Fig. 4b
illustrates. Regarding the template S̄2D as the objective series
and T2D as the testing series, we set the lengths of starting
and ending bands of S̄2D to be 1 since the template S̄2D is
already sanitized.

By implementing SLN-DTW, the similarity of the testing
stream T2D and S̄2D is evaluated. When the DTW distance
between the testing series and the reference template is less
than a preset empirical threshold γ, the testing sequence T2D
has a similar pattern to the reference fall template S̄2D and
the detector will alert that a fall occurs, where γ is empirically
decided by experiments as well as the requirement of FAR and
DR.

In the real-time monitoring, MD module keeps running with
a lower sampling rate and as long as the motion is detected,
the FD module starts working with a high sampling rate to
estimate the speed and detect fall events. When the similarity
between T2D and S̄2D stays low, i.e., the DTW distance larger
than γ, for a long enough time, it switches back to MD module
to save power consumption and computation cost.

V. EXPERIMENTAL RESULTS

To build our DeFall system, we employ two laptops
(Thinkpad T420) equipped with off-the-shelf WiFi network
interface cards (Intel 5300) as the Tx and Rx, as shown in
Fig. 5a. We use the Linux 802.11n CSI tool [56] to collect
CSI measurements. Each of them is equipped with three
omnidirectional antennas and the CSI stream over each pair of
antennas has a total of 30 subcarriers. By default, the system
works on WLAN channel 153 with a carrier frequency of
5.805 GHz and bandwidth of 40 MHz. In the MD module, the
sampling rate is set to be 30 Hz. For FD module, to achieve
a better speed estimation resolution to capture the high-speed
motion, the Tx sends sounding frames with a channel sampling
rate of 1500 Hz.
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(a) Environment 1: typical office environment.
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ments in the typical office.

room2

11.5 m

3 m

3.7 m

4.6 m

4.2 m

room1living room

dining room

cl
os

et

bathroom

3.7 m

4.3 m

4.6 m

kitchen
Tx2

Tx1

Rx

Loc1Loc2

Loc3

Walking 
area

Door

Rx

Tx

(c) Environment 3: typical apartment environ-
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Fig. 6: Experimental environments.
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Fig. 7: Instances of speed and acceleration patterns for “walk-then-fall” and “walk-then-sit”. (a)(e): Speed and acceleration for
“walk-then-fall” under LOS; (b)(f): Speed and acceleration for “walk-then-fall” under NLOS; (c)(g): Speed and acceleration
for “walk-then-sit” under LOS; (d)(h): Speed and acceleration for “walk-then-sit” under NLOS.

A. Experimental Environments

We evaluate DeFall with extensive experiments under vari-
ous conditions (e.g., LOS and NLOS) at different locations in
both office and home environments, with multiple volunteers
involved. The detailed settings are shown in Fig. 6 with the
locations of the Tx, the Rx, and the falling person marked.
The data by a human-like dummy in environment 1 (Fig. 6a)
is used for template-generating as well as detection algorithm
verification. Then real fall/non-fall activities are performed by
volunteers in all environments to further evaluate the impacts
of environment diversity, user diversity and also types of falls.
The ground truth is recorded by video.

In each environment, we change one of the Tx/Rx and
conduct experiments with different placements under both the
LOS and NLOS scenarios. Under the LOS scenario, Tx and
Rx could both “see” the subject, while in the NLOS case,
there does not exist any direct link between the subject and
one or more devices, which is very common for an indoor
environment. Specifically, in environment 1 (Fig. 6a) and
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Fig. 8: Investigation of DBA factors.

environment 3 (Fig. 6c), the Tx is deployed on positions
Tx1/Tx2 under LOS/NLOS conditions. In environment 2 (Fig.
6b), only Rx1 is under the LOS scenario, while the other
placements correspond to the NLOS cases.
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Fig. 9: Templates.

B. Data Collection

The data collection is carried out on different days lasting
for more than three months, during which the surround-
ing propagation environment keeps changing, including the
changes of the placements of furniture, the opening or closing
of doors and windows, etc. To verify the feasibility of DeFall,
we first use a human-like dummy to collect both the template
data and testing data. After that, the samples from real human
falls, as illustrated by Fig. 5b, are further studied to evaluate
the effectiveness of the system.

In the verification experiments, we consider both separate
fall events and continuous motion followed by falls. “Stand-
then-fall”, which represents falling from a stationary standing
posture, is realized by first letting the dummy stand straight
and then making it fall freely; while “walk-then-fall”, indi-
cating the falls happen after the continuous walking motion,
requires the experimenter to walk around the standing dummy
at a normal speed and then make it fall. Instances of the
speed/acceleration patterns for “walk-then-fall” and “walk-
then-sit” under both LOS and NLOS scenarios are presented
in Fig. 7, where we can observe the distinct patterns between
falls and other activities such as sitting and walking. After the
long-term data collection, there are 846 fall samples from the
dummy and 814 non-fall samples for verification in total as
Table III illustrates.

In order to prove that our system can work well in real
world, we further evaluate its performance based on real
human falls. We first involve three volunteers (1 female, 2
males) for multiple long-term experiments to study the impact
of environment diversity, the presence of ambient motion, and
the types of falls (forward, backward and lateral falls). To
investigate the impact of user heterogeneity, we involve 7 more
volunteers at different ages to perform different falls.

C. Generated Templates

In the offline template-generating stage, we build the tem-
plate dataset on the fall samples from the dummy. There are
two factors to be selected in the DBA algorithm, i.e., the
size of template database and the number of iterations. The
investigation of these two factors can be seen in Fig. 8. In
Fig. 8a, the average DTW distance gets more stable as the
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Fig. 10: ROC curves for (a) different scenarios and (b)
comparison with the threshold-based method in WiSpeed.

size of template database increases to 25, while in Fig. 8b it
converges after around 15 iterations. Therefore the number of
iterations and the size of the template database are reasonably
set to be 20 and 40, respectively.

The generated template after refinement and averaging is
presented in Fig. 9. As we can observe, the template has the
same tendency as expected. The speed rises to a peak value
first and then drops, while the acceleration is positive first and
then becomes negative. Also, it can be found that the templates
of LOS and NLOS are highly consistent with each other.
Since the speed estimation in DeFall is based on the rich-
scattering model, as long as the target is within the coverage
of the radios, the system can capture the speed accurately using
either the LOS or NLOS link, preserving not only the average
speed but also the precise speed changes. Due to the high
consistency between the LOS and NLOS scenarios, we use
both LOS and NLOS data for template-generating and apply
the overall template in the detecting phase.

D. Performance Evaluation

1) Evaluation metrics: The evaluation metrics of the sys-
tem performance are detection rate and false alarm rate.
Detection rate, shorted as DR, is defined as the percentage
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Scenario Events Number DR/FAR (DeFall) DR/FAR (WiFall) DR/FAR (FallDeFi)

LOS
Fall

Stand-then-Fall 424 97.40%
97.10%

75.71%
74.32%

91.04%
89.58%

Walk-then-Fall 94 95.74% 68.09% 82.98%

non-Fall
Walking 167 0.00%

1.45%
16.77%

18.90%
10.18%

12.79%
Sitting down 177 2.82% 22.03% 15.25%

NLOS
Fall

Stand-then-Fall 270 98.15%
97.56%

70.37%
69.82%

85.19%
84.45%

Walk-then-Fall 58 94.83% 67.24% 81.03%

non-Fall
Walking 212 0.47%

1.49%
15.09%

17.23%
8.96%

10.43%
Sitting down 258 2.33% 18.99% 11.63%

Overall - 97.28%/1.47% 72.58%/17.45% 87.59%/11.43%

TABLE III: Comparison results with WiFall and FallDeFi.

of correctly detected falls among all falls:

DR =
# of detected falls

# of total falls
, (14)

while false alarm rate, simplified as FAR, is the percentage of
non-falls that are mistaken as falls among all non-falls:

FAR =
# of wrongly detected nonfalls

# of total nonfalls
. (15)

2) Receiver operating characteristic (ROC) curve: The
threshold γ in the decision-making stage plays an important
role in determining the boundary between fall and non-fall
events, and therefore it has to be selected carefully. To evaluate
the performance of DeFall, instead of proposing the specific
threshold directly, we first calculate the DR and FAR with
various thresholds and generate the overall ROC curve as
illustrated by Fig. 10a. We also investigate the ROC curves in
LOS and NLOS scenarios, respectively. As seen, there exists
a trade-off between DR and FAR. If the γ is small, then there
tends to be fewer speed sequences to reach the standard, i.e.,
the smaller γ is, the lower the DR is, while also getting a lower
FAR. Note that the ROC curves of LOS and NLOS overlap
with each other. Also, both of them are highly similar to the
overall ROC trend, verifying the consistency of the proposed
system in LOS/NLOS scenarios.

3) Effectiveness of the DTW-based pattern matching: In
the previous work WiSpeed [24], a simple threshold-based
method is applied to detect falls and two features are pro-
posed: (i) the maximum speed; (ii) the maximum change in
acceleration within 0.5 s. In DeFall, we use the same CSI-
based speed estimator as Wispeed but improve the detection
performance by adding the DTW-based pattern matching for
making a decision. To show the effectiveness of the DTW-
based detection module, we also get the ROC curve of
WiSpeed by simultaneously adjusting the boundaries for the
two aforementioned features and compare it with DeFall as
shown in Fig. 10b. As Fig. 10b illustrates, at the same level
of FAR, the DR of DeFall is higher than WiSpeed. The area
under the curve (AUC) of the ROC of DeFall is larger as well,
proving a better performance. In particular, when the FAR is
less than 1.5%, DeFall can still achieve a high DR over 95%
while the corresponding DR of WiSpeed drops to a level less
than 75%.
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Fig. 11: Long-term testing in an apartment environment.

E. Robustness to Indoor Activities

For a fall detection system, DR is very crucial due to the
high risk of miss detection. On the other hand, FAR is also
essential since other daily activities are performed most of
the time in practice. Thus a system that yields a low FAR
while keeping a reasonable DR is preferred. In this work,
the threshold yielding an overall FAR 1.47% is selected for
further system evaluation and the corresponding overall DR is
97.28%.

The results of DR and FAR for all types of events are
summarized in Table III. According to the results, DeFall
succeeds in performing a high DR and low FAR under both
LOS and NLOS scenarios. Comparing the results of different
fall events, we can notice a higher DR on “stand-then-fall”
events than “walk-then-fall” events since “walk-then-fall” may
introduce interference to the speed estimation at the beginning
of falls. Also, among the non-fall events, as “sitting-down”
experiences an acceleration followed by a deceleration, which
is more similar to the fall pattern than “walking”, it is can be
observed that FAR of “sitting-down” is slightly higher than
that of “walking”.

We implement WiFall [20] and FallDeFi [22] for the
comparative study. WiFall extracts seven different features
for classification based on the variation of CSI amplitude
over time, while FallDeFi selects features from the STFT
spectrogram and the power burst curve (PBC). To make a fair
comparison, we optimize the parameters in these two works to
adapt to our dataset. We apply 40 fall samples to generate the
template in DeFall, while we use 80 samples (40 falls and 40
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Objects Material Size/Weight FAR
Bottle Plastic, water 0.5kg 0.0%
Bag Nylon 1kg 0.0%
Plate Plastic Radius = 12cm 0.0%
Plate Metal Radius = 10cm 0.0%
Book Paper 22cm× 18cm 0.0%

Box Paper
17cm× 17cm

×25cm, 0.8kg
0.0%

Chair Wood
50cm× 40cm

×58cm, 3kg
0.0%

TABLE IV: Impact of falling objects.

non-falls) to train the classifiers in WiFall and FallDeFi. The
results in Table III demonstrate that DeFall outperforms both
WiFall and FallDeFi with a higher overall DR (24.7% higher
than WiFall and 9.69% higher than FallDeFi) and a lower FAR
(15.98% lower than WiFall and 9.96% lower than FallDeFi).
In addition, under both LOS and NLOS scenarios, DeFall
also performs better in terms of the corresponding DR and
FAR. The reasons for this performance enhancement can be
attributed to the environment-independent speed information
extracted by DeFall and the DTW-based pattern matching
which adapts to the consecutive activities. More specifically,
the features extracted in WiFall are based on the signal
variation and could be different in different settings, while
the speed estimated in DeFall is an inherent property of falls.
Although compared with WiFall, FallDeFi devises more robust
features using time-frequency analysis, its spectral features are
partly dependent on the signal strength and do not take the
detailed change pattern of falls into consideration. We also
observe that the performance of WiFall and FallDeFi degrades
especially for consecutive events such as “walk-then-fall”.
This is because WiFall and FallDeFi either assume segmented
activities or apply the “event duration” as a feature, which
can easily lead to misclassifications if falls and other normal
activities cannot be separated reliably, while DeFall employs a
sliding window combined with the pattern matching approach
which is more flexible to handle consecutive activities.

To take all possible daily activities into consideration and
test the robustness of the system in practical, we further run
the system in the same apartment (Fig. 6c) for four days.
Specially, we deploy two pairs of transceivers to cover the
main motion areas - living room and dining room, respectively.
The participant stays in the apartment every day and may
perform any daily activities in the monitored areas. No fall
happens during the testing. We apply the same template
and detection algorithm to the collected speed series. The
experiment results for the long-term continuous test can be
found in Fig. 11. The decision is output every second and the
corresponding false alarms are counted. We have only 12 and
19 false alarms in total during the four-day testing in the living
room and dining room. On average, we have 3 and 6.3 false
alarms per day, which is acceptable considering the involved
complicated daily activities.

Forward Backward Lateral Average
User 1 96.67% 95.56% 94.44% 95.56%
User 2 94.44% 96.67% 93.33% 94.81%
User 3 95.56% 97.78% 97.78% 97.04%
Average 95.56% 96.67% 95.19% 95.80%

TABLE V: Detection rates on different fall types.

Env. 1 Env. 2 Env. 3
LOS NLOS LOS NLOS LOS NLOS
Tx1 Tx2 Rx1 Rx2 Rx3 Rx4 Rx5 Tx1 Tx2

Loc 1 97.78% 95.56% 100% 97.78% 91.11% 95.56% 93.33% 97.78% 95.56%
Loc 2 - - - 100% 93.33% 93.33% 91.11% - 95.56%
Loc 3 - - - - 97.78% 97.78% 93.33% - 97.78%
Average 97.78% 95.56% 100% 98.89% 94.07% 95.56% 92.59% 97.78% 96.30%

TABLE VI: Detection rates in various environments.

F. Robustness to Falling Objects

There are fall-like events that may cause false alarms, such
as falls of chairs and dropping a small object to the ground.
To test the robustness of the system against the interference
from these events, extensive fall experiments are conducted on
objects with different sizes and different materials. For small
objects, each of them is lifted up and then dropped from a
height of 1m, which is repeated 50 times at various locations
to evaluate a reliable FAR. We also repeat testing a falling
wooden chair. The corresponding result listed in Table IV
presents that all the FARs are 0.0%, verifying the robustness
of DeFall. This is because common objects which can be
lifted up are usually much smaller than a human body and
therefore, even if dropped from a high position, they produce
fewer dynamic scatterers and cause less disturbance to the
environment. In such a case, the speed or acceleration values
cannot be detected or the values are not continuous. For falling
chairs, they always fall with lower centers of gravity and have
smaller speeds than human falls.

G. Types of Falls

Three volunteers are involved in the experiments of real
falls. In this subsection, we study the impact of the orientation
of a fall, i.e., forward, backward and lateral. Each of the three
volunteers performs 5 forward falls, 5 backward falls and 5
lateral falls in all settings. To better mimic real-world falls,
the subjects first perform normal activities, either walking
or standing still, and then fall in different directions under
each setting. The overall results are summarized in Table.
V. Taking the experiments in all environments into account,
we find that the falls in all the considered directions can
achieve a detection rate above 95.00%. The results are as
expected because the proposed approach is independent of the
moving/falling directions.

H. Environment Diversity

To validate the robustness of DeFall to diverse environ-
ments, extensive experiments are carried out in both office
and home environments. Also, the locations of Tx and Rx
are changed. During the experiments, each subject performs



12

Door

Tx

6.2 m

3.5 m

Rx

A B

C D

Test area

Tx

Rx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Sample 
locationx

Tx

Rx

Sample 
locationx

(a) Setting 1: NLOS scenario.

Door

Tx

6.2 m

3.5 m

Rx

A B

C D

Test area

Tx

Rx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Sample 
locationx

Tx

Rx

Sample 
locationx

(b) Setting 2: LOS scenario.

Door

Tx

6.2 m

3.5 m

Rx

A B

C D

Test area

Tx

Rx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Sample 
locationx

Tx

Rx

Sample 
locationx

(c) Setting 3: LOS scenario.

Fig. 12: Settings for analyzing coverage.

Training/Template Testing DR (DeFall) DR (WiFall) DR (FallDeFi)

Env. 1 Env. 1 96.67% 72.22% 90.00%

LOS in Env. 1 NLOS in Env. 1 95.56% 53.33% 82.22%

Env. 1 Env. 2 95.37% 56.11% 81.30%

Env. 1 Env. 3 96.67% 52.78% 76.11%

TABLE VII: Impact of environmental changes.

User 1 User 2 User 3 User 4 User 5
DR 95.56% 94.81% 97.04% 91.67% 97.22%
weight (kg) 77 50 84 70 62
height (cm) 174 166 168 172 175

User 6 User 7 User 8 User 9 User 10
DR 94.44% 97.22% 100% 94.44% 97.22%
weight (kg) 60 90 70 91 53
height (cm) 169 178 171 170 160

TABLE VIII: Detection rates of different users.

15 falls in different directions on different positions marked
in the floorplan shown in Fig. 6. As reported in Table VI, a
minimum detection rate of 91.11% can be achieved in different
environments. The high detection rates are as expected because
the proposed approach is environment-independent.

We also highlight such independence by comparing it with
WiFall and FallDeFi. As Table VII indicates, when we classify
the data collected in a different environment from the training
dataset, DeFall outperforms both of WiFall and FallDeFi with
a higher detection rate.

I. User Diversity

As different users have different heights, body shapes and
gait styles, and a reliable fall detector should not be affected
by the diversity of users, it is non-trivial to investigate the
impact of the user heterogeneity on the performance. To do
this, during a two-week experiment, 7 more volunteers with
ages ranging from 23 to 59 are asked to perform falls at various
locations in environment 2. Similar to the previous experimen-
tal procedure, the volunteers perform random activities before
falling. Each volunteer falls three times (1 forward, 1 backward
and 1 lateral) under each setting. Combining the experiments
of different displacements and different locations, we focus on

w/ other moving person

motion
w/o other

light motion heavy motion
3-5 m > 5m 3-5 m > 5m

LOS 12/15 15/15 8/15 15/15 15/15
NLOS 13/15 15/15 6/15 14/15 15/15

TABLE IX: Detection results with ambient motion.

studying the impact of user diversity and summarize the results
in Table VIII. For Users 1-3, we have 270 samples each, while
for Users 4-10, 36 samples are collected by each user. The
users have weights varying from 50 kg to 91 kg and heights
varying from 160 cm to 178 cm. Among all the ten subjects,
User 7 is the tallest and User 9 is the heaviest while both User
7 and User 9 experience miss detection. Therefore, although a
greater height and weight indicate more dynamic scatterers on
the torso for signal propagation, we cannot conclude that there
is an obvious monotonic relationship between users’ heights or
weights and the detection performance based on the samples
from ten subjects.

J. Impact of Ambient Motion

In this part, we investigate the robustness of the DeFall
system when a second subject is moving in the vicinity of
the first falling subject, with both LOS and NLOS cases con-
sidered. Intuitively, two factors may affect the performance,
the distance between the two subjects (“distance”) and the
motion strength of the second subject. To study their impacts,
we conduct experiments with a distance of 3-5 m and >5
m between the two subjects while for the motion strength, we
consider heavy motion (walking) and light motion (reading and
typing). Under each setting, 15 fall events occur with different
fall orientations, and the results are presented as the ratio of
the number of detected falls to a total of 15 falls in Table
IX. As we can see, when the second person is walking, the
detection rate degrades as the distance decreases due to the
interference from the other person. Nevertheless, some falls
can still be detected even when the walking person is close.
This is because the system estimates speed by localizing the
first valley as Fig. 2d shows, which always corresponds to
the highest speed of the massive scatterers. Therefore, the
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DR FAR
A 95.45% 1.28%
B 91.30% 1.33%
C 95.45% 2.56%
D 90.91% 0.0%

TABLE X: DR and FAR
under setting 1.
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Fig. 13: DR and FAR under set-
ting 2 and setting 3.

high speed associated with a fall can still be captured. Also,
the motion strength of the interfering person has a significant
impact on the performance, and a light motion by the second
person has much less interference than a strong motion.

In fact, fall detection mainly aims at protecting the elderly
people who live alone by sending alarms to remote caregivers
when the subject being monitored falls. If there is another
person nearby, timely assistance is available and the harm
to the subject experiencing a fall will be greatly reduced.
Therefore, the slight degradation in the multi-user case has
little impact on the applicability of DeFall as it ensures great
performance for a single-user case and the cases when another
user is relatively still or far away.

K. Coverage

It is important to provide a large coverage for a real-
world fall detection system. For this purpose, we conduct
experiments in a large empty hall to evaluate if falls that
are far away from the devices can be detected. As shown in
Fig. 12a, for the NLOS setting, the Tx is deployed at the
center of a room with size 6.2 m × 3.5 m, the Rx is in the
hall and 10 m away from the Tx, and falls are performed at
four corners with the corresponding DR and FAR shown in
Table X given the pre-selected threshold in Section V-E. For
the LOS setting, in order to find the impact of the distance
between the subject and devices, we first sample uniformly on
positions marked with “X” along the circle centered around
Tx with a changing radius as shown in Fig. 12b. In the second
LOS setting shown in Fig. 12c, falls occur along lines parallel
to the direct link. Massive fall samples are collected using
the human-like dummy and a real human performs non-fall
activities. Illustrated by Table X, the system under setting 1
can cover an area as large as a normal office. Also, revealed by
Fig. 13, DR and FAR both decrease as the distance between
the subject and devices increases.

VI. DISCUSSION

In this section, we will discuss the result of applying 2-
D template comparing with that of using only 1-D speed
template and 1-D acceleration template, which demonstrates
the necessity of combining the features into 2-D space. Also,
we will study the impact of the sampling rate and investigate
the speed distribution of activities. In addition, we evaluate the
computation cost.
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(a) ROC curves for 2-D template
and 1-D separate templates.
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Fig. 14: ROC curves for (a) comparison on 2-D template and
1-D separate templates and (b) different sampling rates.

A. Necessity of 2-D Space

The 2-D combining step integrates the information con-
tributed by speed and acceleration. The combination is based
on different weights α and realized by S̄2D =

(
(1−α)S̄, αS̄′

)
.

By setting α = 0, we can get the single speed template
while the single acceleration template can be obtained through
setting α = 1. For 2-D space, we set α to be 0.5. The
performance of the separate 1-D templates and combined
2-D template can be found in Fig. 14a. As shown, the 2-
D combined template outperforms any single template as it
provides a more comprehensive description of the events.

B. Impact of Sampling Rate

As described in Section IV, the sampling rate is a critical
factor affecting the performance of our system. We now
revisit the experimental results in Section V and evaluate the
performance with different sampling rate Fs. The DR and FAR
are studied under different sampling rates 1500 Hz, 750 Hz and
500 Hz, and their corresponding ROC curves are plotted in
Fig. 14b. As illustrated, the overall trends for all the cases are
the same, in which FAR increases as DR increases. However,
the decrease of the sampling rate leads to a degradation in
the performance of DeFall. This is because as the sampling
rate gets reduced, the resolution of the ACF-based speed
estimator degrades correspondingly, which will introduce more
estimation errors and harm the detection accuracy.

C. Speed Distribution of Activities

Although the maximum speed of the template can be up to
around 5m/s, it does not mean the system can only detect
falls with speeds reaching as high as 5m/s. This is because
the proposed template-based method not only depends on the
single maximum speed value but also relies on the trend of
speed, which relaxes the decision boundary compared with a
hard-thresholding method.

To understand the system capability better, we divide our
real fall/non-fall samples into different intervals (0 1m/s],
(1m/s 2m/s], · · · , (5m/s 6m/s] based on their maximum
speeds. The corresponding distribution is shown in Fig. 15a.
Then we apply the same overall template and decision bound-
ary and evaluate the corresponding DR/FAR in each individual
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(a) Distribution based on the maximum speed.
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Fig. 15: Maximum speed distribution and DR/FAR for each
maximum speed interval.

Stage Module
CPU time

(s) (%)

Offline template
generating (dataset
size: 40)

Speed estimation 8.571322 96.23
Database sanitization 0.168743 1.895
DBA for average 0.165920 1.863
2D representation 0.001251 0.014
Total 8.9072

Online computation
for each output

Motion detection 0.000535 2.355
Speed estimation 0.004661 20.52
SLN-DTW & Detection 0.017519 77.13
Total 0.0227

TABLE XI: Processing time of DeFall.

interval, where the DR/FAR is the ratio of detection to the
total falls/non-falls in that specific interval. As we can see,
the maximum speeds of fall and non-fall series samples are
distinct with a small overlapped part. The FAR and DR both
increase with the speed, as illustrated by Fig. 15b. However,
even if the falls and non-falls have the maximum speeds in the
same interval, our system can still distinguish most of them
with reasonable DR/FAR because of their distinct patterns over
time.

D. Computation Cost and Realtime Realization

In the real-time scenario, as the extracted speed feature
is independent of the environments, the offline stage can be
completed ahead of time. Then the pre-trained template can
be applied directly in the decision-making stage.

To evaluate the system computation effort, we repeat the
process using MATLAB on a desktop with Intel Core i7-
9700K processor and 32 GB memory. We record the average
processing time. Table XI illustrates the CPU time for each
module in the offline and online stages. Note that we do not
require a massive amount of data for template generating,
which significantly reduces the computation cost. The total
pre-training process only takes an average CPU time of 8.9 s.

In the online stage, to produce a decision output, it costs only
0.0227 s with a speed estimation module and a simple DTW-
based similarity calculation, which is short enough for real-
time applications.

E. Limitation

Since we only focus on the hard falls which may cause
serious injuries, our approach only deals with unexpected falls
such as stumbles or slips due to weak gait. Other types of
falls such as falls slowly from a lower height, may result
in a different speed pattern from what is described in this
paper. To solve this problem, we need more analysis on the
action decomposition to get a better understanding of the entire
process of various falls. In this case, multiple templates and
deep learning techniques may be required.

Another limitation is that since the algorithm can only
estimate the approximate average speed of the moving objects
in the environment, our system works well when there is a
single person or no strong ambient motion close to the subject.
However, this is fully compliant with the goal of our system
to protect the elderly who live alone.

VII. CONCLUSION

In this paper, we propose DeFall, a novel environment-
independent indoor fall detection system using commercial
WiFi devices. The system extracts speed information to detect
falls even through the walls with a single pair of transceivers.
A real prototype is built to validate the feasibility and evaluate
the performance in various environments. The results show
that DeFall achieves a detection rate higher than 95% on real
falls while maintaining a false alarm rate lower than 1.50%
under both LOS and NLOS scenarios, without any scenario-
tailored prior training.
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